Rene Tamberg

PÕHJA-RAUNJALA (ASPLENIUM SEPTENTRIONALE (L.) HOFFM.)
BIOLOGIA, ÖKOLOGIA, KAITSE JA
POPULATSIOONIGENEETIKA

Bakalaureusetöö

Juhendaja: teadur Kai Rünk

Tartu 2010
Sisukord

1. Sissejuhatus .. 4

2. Liigi üldine ülevaade .. 5
 2.1. Taksonoomiline ülevaade ... 5
 2.2. Geograafiline ja kõrgusvööndiline levik 6
 2.3. Kasvuhoit .. 9
 2.3.1. Klimaatilised ja topograafilised tingimused 9
 2.3.2. Substraat ... 10
 2.4. Taimekooslused .. 11
 2.5. Reageerimine biootilistele teguritele 12
 2.5.1. Konkurents ... 12
 2.6. Reageerimine keskkonnateguritele 13
 2.6.1. Kasvuviis .. 13
 2.6.2. Külma, põua ja liigniiskuse mõju 13
 2.7. Ehitus ja füsioloogia ... 14
 2.7.1. Morfoloogia ... 14
 2.7.2. Mükoriisa .. 15
 2.7.3. Püsiktaim: paljunemine 15
 2.7.4. Kromosoomide arv .. 15
 2.7.5. Füsioloogilised andmed 15
 2.7.5.1. Reageerimine varjutamisele 15
 2.7.6. Biokeemilised andmed 16
 2.8. Fenoloogia .. 17
 2.9. Paljunemine ... 18
 2.9.1. Sporofüüdi paljunemine 18
 2.9.2. Eoste levi .. 18
 2.9.3. Eoste idanemine 18
 2.9.4. Gametofüüdi ehitus .. 20
 2.9.5. Gametofüüdi paljunemine 20
 2.9.6. Hübriidid .. 22
2.10. Herbivooria ja haigused ... 22
2.11. Ajalugu .. 22
 2.11.1. Ajalugu ja levik ... 22
 2.11.2. Kasutusalad .. 23
3. Liigi kaitse .. 23
 3.1. Ohustatus ja liigi kaitse globaalselt ... 23
 3.2. Ohustatus ja liigi kaitse Eestis ... 24
 3.2.1. Levik ja arvukus Eestis ... 24
 3.2.2. Eesti loodusliku populatsiooni kasvutingimused 27
 3.2.3. Populatsioonidünaamika ... 28
 3.2.4. Ohutegurid .. 29
 3.2.4.1. Inim-ja looduslikud mõjud 29
 3.2.4.2. Geneetilised tegurid .. 30
 3.2.5. Liigile soodsa seisundi tagamise tingimused 31
 3.2.5.1. Looduslik populatsioon ja tehispopulatsioonid Prangli saarel 31
 3.2.5.2. Tehispopulatsioonid Lahemaa rahvuspargis 33
 3.2.5.3. Liigi ökoloogia ja populatsioonide uurimine 33
 3.2.5.4. Liikide populatsioonigeeneetika uurimine 33
 3.2.5.5. Liigikatsealase teadlikkuse tõstmine 34
4. Sõnajalaliikide sh. põhja-raunjala geneetilise mitmekesisuse uurimine 34
 4.1. Põhja-raunjala ja perekonna Asplenium geneetilised uuringud 35
 4.2. Sõnajalaliikide geneetilise uurimise meetoditest 36
 4.3. Põhja-raunjala võimalikud molekulaarsed uurimismeetodid 42
Kokkuvõte ... 44
Summary .. 45
Kasutatud kirjandus .. 47
1. Sissejuhatus

Teises osas käsitletakse Eestis kasvavate nii loodusliku- kui ka tehispopulatsioonide seisundit ja pakutakse välja meetmeid kuidas tagada tulevikus liigile soodsad elutingimused ning kaitsa teda keskkonnamõjutuste ja inimtegevuse eest.

Tulevikus on plaanis uurida ja võrrelda nii Eesti kui ka mõne naabermaa (Soome, Rootsi) populatsioonide geneetilist varieeruvust. Vastav teave annaks kohalike populatsioonide kohta rohkem infot ja aitaks neid paremini kaitsta. Kuna liigi geneetilist mitmekesisust on siiani vähle uuritud, tuleks leida selleks sobivad meetodid. Seega käsitletakse kirjanduse põhjal erinevaid sõnajalaliikidel teostatud geneetilisi uuringuid ja pakutakse võimalikud meetodid põhja-raunjala populatsioonigenetika iseloomustamiseks.

Sooviksin sügavalt tänada oma põhjalikku ja abivalmis juhendajat Kai Rünkka, kelle kommentaarid ja soovitused olid igati abistavad. Täienduste ja paranduste eest geneetika ja biokeemia osas tänan Tatjana Oja ja Evi Padu.
2. Liigi üldine ülevaade

2.1. Taksonoomiline ülevaade

Asplenium septentrionale (L.) Hoffm. (põhja-raunjalg; joonis 1) kuulub Monilophyta (lehtsooneostaimede) hõimkonnas Aspleniaceae (raunjalaliste) sugukonda ja on üks ligikaudu 700-st *Asplenium* L. (raunjala) perkonda moodustavast liigist (Wagner et al., 1993).

Joonis 1. Põhja-raunjalg Prangli saarel 1. augustil 2007. a.¹

¹ Käi Rünga foto
2.2. Geograafilne ja kõrgusvööndiline levik

Joonis 2. Põhja-raunjala levik põhjapoolkeral (Hultén and Fries, 1986)

2.3. Kasvukoht

2.3.1. Kliimaatilised ja topografiaamilised tingimused

2.3.2. Substraat

TÜ Ökoloogia ja Maateaduste Instituudi Botaanika osakonna Raja tn kaitseaias uuriti erinevate valgus- ja mullatingimuste mõju põhja-raunjala kasvule. Vaadeldi, kas looduslikust kasvukohast pärit mulla (pH = 4,1) lisamine katsetingimuste mullale mõjutab isendite kasvu. Taimed kasvasid happelises mullas olerõhkelt suuremaks kui neutraalses ning neil oli rohkem pikemaid lehti. Samas polnud parameetrites olulist statistilist erinevust kui vörreldi isendeid, mis olid kasvanud istutusmullas, kuhu oli kas lisatud mulda looduslikust leiukohast või mitte (Rünk, 2008).

2.4. Taimekooslused

USAs, Oregoni osariigis, Cascade Crestist läänepoolseid leiukohtad on enamikus kuuse-segametsadest puistutes. Mõned iseloomulikud liigid seal on: Pinus lambertiana (suhkrumänd), Pinus monticola (läänemänd), Tsuga heterophylla (läänetsuuga) ja perekond Pseudotsuga (ebatsuuga). Kaljupaljanditel võib tihtipeale kohata liiki Kalmiopsis fragrans. Põhja-raunjala leiukohad asuvad üllatavalt kuivades kohtades ja sõnajalgtaimedel elutegevus on häiritav sammalde poolt, mis katavad suure osa kividest. (Cushman and Malaby, 2005)

2.5. Reageerimine biootilistele teguritele

2.5.1. Konkurents

2.6. Reageerimine keskkonnateguritele

2.6.1. Kasvuviis

Kuigi tegemist on võrdlemisi madalakasvulise liigiga, millel on kasvu algfaasis vähelikkasvuline leht, võib vanematel nende arv kuini mitmesajani ulatuda. Isendid moodustavad kasvades ja arenedes risoomiharude abil suuremaid puhmikuid kui enamik teisi liike perekonnas Asplenium (Page, 1997).

2.6.2. Külma, põua ja liigniiskuse mõju

küllaltki kõrge. Põhja-raunjalga on harva leitud kasvamas ka väga niisketest kasvukohtadest (Simatchev, 1999). Samas arvatakse, et ilmselt on need hea drenaažiga paigad, kus tainedel on neile sobivad niiskustingimused (Öllgaard and Tind, 1993)

2.7. Ehitus ja füsioloogia

2.7.1. Morfoloogia

2.7.2. Mükoriisa

2.7.3. Püsiktaim: paljunemine

Põhja-raunjala risoom võib haruneda mitmeks osaks, risoomiharud moodustavad tihedalt asetsevaid puhmikuid (Page, 1997). 2009. a astal seisundiseirel saadud tulemuste põhjal Eestis looduslikul populatsioonil oli 190-st isendist arenenud 24% vegetatiivselt ja 76% generatiivselt (Rünk, 2009a).

2.7.4. Kromosoomide arv

2.7.5. Füsioloogilised andmed

2.7.5.1. Reageerimine varjutamisele

TÜ Ökoloogia ja Maateaduste Instituudi Botaanika osakonna Raja tn kaitseaias läbiviidud eksperimendi kohaselt kasvasid liigi noored sporofüüdid happinessel mullal
(pH=4,9) oluliselt suuremaks kui neutraalsel mullal (pH=6,8-7,0) ning neil oli rohkem pikemaid lehti. Kõige suurema biomassi ja lehtede arvu saavutasid taimed varjus kasvades (25% ja 50% võimalikust päikesevalgusest). Pikimad lehed kasvasid varjus, sealjuures polnud olulist vahet, kas var oli 90%, 75% või 50%. Taimed olid oluliselt väiksemad/vääiksema arvu lehtedega ning veelgi väiksemad täispäikese (100% valgust) kääs kasvades. Huvitaval kombel kasvab põhja-raunjala ainukene Eesti looduslik populatsioon märkse valgmas kasvukohas: keskmise kättesaadav koguvalgus on 72,5% (Rünk, 2007). Ka mujal Euroopas on põhja-raunjala kasvukohad suhteliselt päikesepaistelised (Øllgaard, 1993; Jonsell, 2000). Kesk-Euroopas on tegemist valgustarmastava liigiga, mida on harva leitud tingimustes, kus päikese koguvalgus oleks vähem kui 40% (kontinentaalsuse väärtav 8 üheklaaselmisel skaalal) (Ellenberg et al., 1991). Ühelt poolt võib oletada, et looduses võivad isendid püsima jääda seal, kus nooremad on esialgu saanud areneda ja kasvada kivide varjus (tegemist on petrofiilse liigiga). Teiselt poolt on aga ilmne, et valgusrikkamas kasvukohas suudavad isendid kasvada ja püsima jääda siiski vaid sellises päikesepaistelises kasvukohas, kus nende juured ulatuvad sügavale kivide vahele ning suudavad taime varustada vajaliku hulga veega ka kuivadel kasvuperioodidel (Rünk, 2008).

Kahe faktori: mulla ja valguse koosmõju analüüs näitas, et mullafaktori mõju avaldub vaid täispäikese kääs ja ainult lehepikkusele – ilma varjuta kasvades olid loodusliku mulla lisandiga istutusmullas kasvanud taimed pikemate lehetedega kui need, kelle istutusmulda seda polnud lisatud (Rünk, 2008).

2.7.6. Biokeemilised andmed

Imperato (1983, 1984, tabel 1) järgi on põhja-raunjala taimedest leitud nii aminohappeid, ketohappeid, tsüanogeenseid glükosiide, flavonoide ja fenoolglükosiide. Lisaks veel üks nii laktoonide (N-asetüülornitiin) kui ka flavonoolglükosiidide (Kempferool-3-O-soforotriosiid-7-O-glükosiid) rühma kuuluv ühend.
Tabel 1. Põhja-raunjalalt leitud keemilised ühendid.

<table>
<thead>
<tr>
<th>Aine nimi inglise keeles</th>
<th>Eesikeelne nimi</th>
<th>Keemiline kuuluvus</th>
<th>Viide autorile</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-hydroxy-4-methylglutamic acid</td>
<td>4-hüdroksü-4-metüülglutamiinhape</td>
<td>Aminohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>2-aminopimelic acid</td>
<td>2-aminopimelinhape</td>
<td>Aminohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>2-amino-4-hydroxypimelic acid</td>
<td>2-amino-4-hüdroksüpimelinhape</td>
<td>Aminohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>Pyruvic acid</td>
<td>Püruvinamarihape</td>
<td>Ketohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>Hydroxypyruvic acid</td>
<td>Hüdroksüprüruvinamarihape</td>
<td>Ketohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>2-oxoglutaric acid</td>
<td>2-oksoglutaarhape</td>
<td>Ketohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>2-oxopimelic acid</td>
<td>2-oksopimelinhape</td>
<td>Ketohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>4-hygroxy-2-oxo-pimelic acid</td>
<td>4-hüdroksü-2-oksopimelinhape</td>
<td>Ketohape</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>Cyanogenetic glycosides</td>
<td>Tsüanogeensed glükosiidid (grupp aineid)</td>
<td>Tsüanogeensed glükosiidid</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>N-acetylornithine</td>
<td>N-atsetüülornitiin</td>
<td>Laktoon</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>Isoquercitrin (quercetin-3-O-β-D- glycoside)</td>
<td>Isokvertsiiri</td>
<td>Flavonoid</td>
<td>Imperato, 1983</td>
</tr>
<tr>
<td>Quercetin-3-O-(3′-sulphate) glycoside</td>
<td>Kvertsetiin-3-O-(3′sulfaat) glükosiid</td>
<td>Flavonoid</td>
<td>Imperato, 1983</td>
</tr>
<tr>
<td>Kaempferol-3-O-sorotrioside-7-O-glycoside</td>
<td>Kempferool-3-O-sorotriosiid-7-O-glükosiid</td>
<td>Fenooolglükosiid</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>1-p-cumarylglucose-3″-sulphate</td>
<td>1-p-kumarüülglükoos-3″-sulfaat</td>
<td>Fenooolglükosiid</td>
<td>Imperato, 1984</td>
</tr>
<tr>
<td>Kaempferol-3-soroside-4′-glycoside</td>
<td>Kempferool-3-O-sorotriosiid-4′-O-glükosiid</td>
<td>Flavonoolglükosiid</td>
<td>Imperato, 1990</td>
</tr>
</tbody>
</table>

Türgis kasvaval põhja-raunjala populatsioonil uuriti tuberkuloosi põhjustava mükobakteri vastast aktiivust, aga seda ei leitud (Tosun, 2004).

2.8. Fenoloogia

Skandinaavias valmivad põhja-raunjalal eosed juulist oktoobrini, aga nende levik võib jätkuda isegi talvel (Øllgaard and Tind, 1993). Eestis toimub see juulist septembrini (Kuusk, 2007).

2.9 Paljunemine

2.9.1. Sporofüüdi paljunemine

Põhja-raunjalg on homospoorne liik, mis tähendab, et sporofüüdil tekkinud spoorid on ühte tüüpi ja ühesuurused (Cushman and Malaby, 2005). Sobivates kasvutingimustes (kultivatsioonis) saavutavad isendid suguküpsuse juuba esimese vegetatsiooniperioodi lõpuks (Rünk, suulised andmed).

2.9.2. Eoste levimine

2.9.3. Eoste idanemine

idanesjuht oli 1 kuu vanustel eostel: 0,5%) ja kuivad tingimused 12 kuu vanustel eostel
-20°C juures (45% idanemisedukus). Üldiselt jää 5° ja 20°C juures erinevatel
ajavahemiket hoiustatud eoste idanemisedukus sarnasesse suurusjärku, kuigi kohati oli 5
raadi juures edukam. Kuivades oludes säilitatud eoste idanemisedukus oli kokkuvõttes
mõnevõrra parem kui märgade tingimuste oma, viidates nende vastupidavusele kuivades
oludes. Seega on eosed erinevates keskonnatingimustes küllaltki vastupidavad ja
säilitavad hästi idanemisvõime.

Kuigi eosed säilivad erinevates tingimustes hästi, vajavad nad idanemiseks
kindlmaid tingimusi. Huvitavad tulemused saadi Šotimaal, kus uuriti haruldaste Briti
sõnajalgliikide mullas säiluvat eostevaru (eostepanka) populatsioonide võimaliku
taastamise eesmärgi (Dyer and Lindsay, 1996). Kultuuris tehtud idanemiskatsel ei
idanenud põhja-raunjala eosed 5°C juures üldse, 10° juures võttis eoste idanemine kaua
aega ja idanemisprotsent oli madal (86. päeval 10%) ning 15° juures oli 43. päeval
idanenud 38% eostest. Kuigi antud tulemuste mõjutavad välitingimustes tõenäoliselt nii
temperatuurikõikumised kui teiste kohalike kliimatingimuste koosmõju, võib
katsetulemustest siiski järedada, et mida madalam on temperatuur, seda kauem võtab
põhja-raunjala eostel idanemine aega ja seda vähem eosed idaneb. Suhteliselt kõrge
edu ka idanemise temperatuur on ilmselt ka üheks põhja-raunjala levikut piiravaks
põhjuseks. Samal ajal võimaldab pikaeline eostepank eostel tärgata ka järgmistel aastatel
(Dyer and Lindsay 1996).

Ka Eesti populatsioonil säiluvad eosed mullas idanemisvõimelistena vähemalt
jaarmise suveni (Rünk et al., 2008).

kogutud ja toatemperatuuril või külmkapis (5–7°C) säilitatud põhja-raunjala eost külvati Petri
tassidesse, destileeritud veega immutatud filterpaberile. Petri tassid asetati laborisse
päevavalguslampide alla. Kümne nädala pärast loeti kokku kokku idanenud eosed, millede osakaal
(99,86%) 2008. aastal kogutud eoste hulgast oli väga suur. Lisaks tähteldati, et põhja-raunjala
üks aasta toatemperatuuril säilitatud eosed säilitasid idanemisvõime oluliselt paremini kui
külmkapis (vastavalt 96,99% ja 84,10%) (Rünk, 2008).
2.9.4. Eose ehitus

2.9.5. Gametofüüdi paljunemine

2.9.6. Hübriidid

Põhja-raunjalg moodustab Euroopas teadaolevalt seitset erinevat hübriidi ja Põhja-Ameerikas ühte (Asplenium ×alternifolium Wulf) (Øllgaard and Tind, 1993; Wagner et al., 1993).

2.10. Herbivooria ja haigused

Inglismaal on täheldatud, et niisketes kasvutingimustes langeb liik sagedamini tigude ja nälkjate rünnakute ohvriks (Page, 1997).

2.11. Ajalugu

2.11.1. Ajalugu ja levik

eeldavasti alamiigist tänapäeval tuntud tetraploidne põhja-raunjalg, mis võimaldas viimasel gametofüüdisisese iseviljastumisega Euroopas levida (Vogel *et al.*, 1999b).

2.11.2. Kasutusalad

3. Liigi kaitse

3.1. Ohustatus ja liigi kaitse globaalselt

23
eemaldamine kasvukohast ja koosluse struktuuri muutmine. Ohuteguriteks on pakutud veel kaevandustegevust ja inimese poolt põhjustatud metsatulekahjustid (Cushman and Malaby, 2005).

3.2. Ohustatus ja liigi kaitse Eestis

3.2.1. Levik ja arvukus Eestis

pärit sealtsamast (TÜ Loodusmuuseumi herbaarium). Tiskre leiukohta ning leiukohta Määra külss on kontrollitud korduvalt, viimati 2006.a., kuid taimi sealt enam ei leitud (Aguraiuja, 2006).

Joonis 5. Põhja-raunjala loodusliku kasvukoha müür Prangli, 3. september 2009. a.²

Praeguse ainukese teadaoleva leiukohta Prangli saarel asuval kivimüüril leidis 1993. a T. Ploompuu (Kukk ja Kull, 2005; joonis 5, joonis 6). 2009. a. seireandmete järgi (Urman ² Kai Rünga foto)

Kai Rünga foto
3.2.2. Eesti loodusliku populatsiooni kasvutingimused

Eestis on üheks levikut piiravaks faktoriks kindlasti kaljutaimenele sobivate kasvuhohtade - mõlemate, nii gametofüütide kui sporofüütide kasvutingimustele vastavate rändrahnu ja kiviaedadade vähesus. Liigile on eelkõige oluline, et kasvukoht oleks sobivate niiskustingimuste ja mullaga. Eestis kasvab põhja-raunjala ainuke populatsioon graniitkividest müüri küljel mullas kivide vahel. Muld, milles põhja-raunjala taimed kasvavad on tugevad happeline (pH\textsubscript{KCl}=4,08), vähese orgaanilise aine (2,43%), madala kaaliumi (72,28 mg/kg) ning magneesiumi (22,61 mg/kg) sisaldusega. Mulla mineraalosa koosneb madala karbonaatidesisaldusega (280 mg/kg) keskmise kuni jámeda fraktsiooniga liivast (d=0,25-1 mm) (Rünk, 2007).

Põhja-raunjalg kasvab enamasti avatud valgusrikaste s lõunapoolse ekspositsiooniga kasvuhohtades, sageli päikesepaistel, kuid kannatab ka poolvarju (Øllgaard and Tind, 1993; Jonsell, 2000). Valgusrikad on ka Prangli looduslik leiuhoht. Enamus müüri, mille põhja-raunjalg seal kasvab on lõunakagu (SSE) asend (~60 m) ja väiksem osa (~20 m) vastu idakagu (ESE) ilmakaart. Hemisfääriliste fotode analüüs näitas, et kasvukoha keskmine avatus on suur: 55,3%, varieerudes müüri erinevates osades 37,5-62,3% võimalikust. Siiski ei erine SSE ja ESE müüriosadavate avatuse poolest. Koguvalgus (% võimalikust; SSE 84, ESE 61) ja otsene valgus (% võimalikust; SSE 85, ESE 58) on aga müüriosadel erinev: lõunakagus kasvavad taimed saavad rohkem valgust kui idakagus. Hajusa valguse hulk ei ole oluliselt erinev (Rünk, 2007).

Suhteliselt kõrge eduka idanemise temperatuur on ilmselt ka üheks sõnajalaliigi levikut piiravaks põhjuseks. Samal ajal võimaldab pikaajaline eostepank eostel tärgeta ka

3.2.3. Populatsioonidünaamika

(loendatud kogu populatsioon) (Rünk 2009a).

<table>
<thead>
<tr>
<th>Seirejaam</th>
<th>Seire tüüp</th>
<th>Aasta</th>
<th>Isendite arv</th>
<th>Noored eostest kasvanud taimed</th>
<th>Vegetatiivsed</th>
<th>Generatiivsed</th>
<th>Hukkunud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prangli Ruuduseire</td>
<td>1994</td>
<td>160</td>
<td>määramata</td>
<td>Määramata</td>
<td>määramata</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>165</td>
<td>18</td>
<td>-</td>
<td>165</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>190</td>
<td>16</td>
<td>39</td>
<td>151</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>187</td>
<td>4</td>
<td>29</td>
<td>168</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>168</td>
<td>10</td>
<td>12</td>
<td>151</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>139</td>
<td>-</td>
<td>9</td>
<td>130</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Seisundiseire</td>
<td>2009</td>
<td>190</td>
<td>24%</td>
<td>76%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.4. Ohutegurid

3.2.4.1. Inim- ja looduslikud mõjud

Ka looduslikud tingimused võivad liigi elujõulisust pärssida. Kuna populatsioon kasvab küllaltki spetsiifilises kasvukohas müüri küljel kivide vahel, võib ta seega olla ohustatud veepuudusest vähese vihmaga aastatel. Kuivuse tõttu muutub muld kivide vahel kergesti liikuvaks ja võib kivide vahelt välja pudeneda. See on aga ohlik

3.2.4.2. Geneetilised tegurid

3.2.5. Liigile soodsalt tagamise tingimused

3.2.5.1. Looduslik populatsioon ja tehispopulatsioonid Prangli saarel

⁴ Kair Rünga foto
3.2.5.2. Tehispopulatsioonid Lahemaa rahvuspargis

Kõik kolm tehispopulatsiooni Lahemaa rahvuspargis asuvad riigi reservmaal ning jáäavad Lahemaa rahvuspargi territooriumil Lahemaa piiranguvööndi alale, kus kaitse-eeskirja § 11 lg 7 (RT I 1997, 45, 728) lubab alla 50 osalejate arvuga rahvaürituste korraldamist väljaspool selleks planeeringuga ettenähtud kohti. Kuna see võib liigile häirivaks või isegi ohtlikuks muutuda, tuleks määra kõigis kolmes tehispopulatsiooni katsekohas põhja-raunjala püsielupaigad, kus kaitse-eeskirjaga oleks keelatud rahvaürituste korraldamine ning inimeste liikumine lubatud vaid mööda teid ja radasid. 2009. aastal koostati sealsetele populatsioonidele tegevuskava (Rünk, 2009a).

Põhja-raunjala tehispopulatsioonide regulaarset uurimist ning asutamist tuleks jätkata (Rünk, 2009a).

3.2.5.3. Liigi ökoloogia ja populatsioonide uurimine

Tuleks koostada projekt põhja-raunjala populatsioonide elujõulisuse analüüsi (PVA) jaoks vajalike demograafiliste ja keskkonnaandmete kogumiseks ning PVA läbi viimiseks (Rünk, 2009a).

3.2.5.4. Liikide populatsioonigeneetika uurimine

Liikide geneetilise kaitse teoorias (näit. Franklin, 1980) peetakse populatsiooni geneetiliselt ohustatuts, kui selles on alla 50-500 sigimisvöömelise isendi. Seega on
Eesti väga väike põhja-raunjala populatsioon (190 isendit 2009. a) geneetiliselt ohustatud.
Geneetilistest ohtudest on olulisemad geneetilise mitmekesisuse kadu ning
inbriiidepresioon (Oostermeijer, 2003). Vajalik on koostada põhja-raunjala
populatsioonigenetikka uurimisprojekt, mille eesmärgiks on nimetatud liikide
populatsioonide geneetiliselt soodsusi saavutamiseks vajalike meetmete
väljatöötamine (Rünk, 2009a). Vastavat teemat on põhjalikumalt käsitletud käsioleva töö
neljandases osas.

3.5.5.5. Liigikatsealase teadlikkuse töömise

Bioloogilise mitmekesisuse kaitse ja liikidele soodsus seisundi tagamise seisukohalt on
oluline elanikkonnale ja eriti üldhariduskooli õpilastele tutvustada kaitsealuseid liike.
Sõnajalad on tagasihoidliku välimusega taimed, mida tuntakse üldiselt halvasti.
Kaitsealuseid liike esineb harva, neid teatakse-tuntakse veelgi vähem. Momenti
seisuga (2010 aasta mai) saab TÜ Botaanikaaias I kategoriooril kaitsealustest sõnajalgadest
öppida tundma põhja-raunjala körval ka Brauni astelsõnalaga, kuid 2010. ja 2011. aastal
planeeritakse kollektiooni täiendamisega jätkata. Ka Tallinna Botaanikaaias on
kollektiooni rajamisega alustatud. Siiski jääb selgest väheks ning ärä võiks kasutada kõik
erinevad meediavõimalused: nii trükised, film/video kui ka internet. Ettepanekute hulka
kääb kaitsealuste sõnajalgade kollektiooni tutvustavate trükiste (voldik, poster)
väljaandmine, kaitsealuse informatsiooni levitamine internetis (Keskkonnaministeerium,
Tallinna Botaanikaaed jt), tutvustava raamatu ning videofilmi väljaandmine (Rünk,
2009a).

4. Sõnajalaliikide sh. põhja-raunjala geneetilise mitmekesisuse
uurimine

Liigi ja koosluse körval on looduskaitsebioloogide oluliseks uurimisvaldkonnaks ka
geneetiline tasand. Isendid populatsioonis on alati üksteisest rohkemal või vähemal
määräl erinevad, mis on põhjustatud nende epigeeneetilistest teguritest, nt. fenotüüpsest
plastilisusest ning geneetilistest erinevusest. Erinevad geenivormid ehv alleelid võivad isemoodi mõjutada isendi arengut või füsioloogiat. Geneetilise varieeruvuse ulatus populatsioonis on määratud nii hästi rohkem kui üht alleeli omavate geenide ehk polümorfsete geenide hulgaga. Kui ka iga sellise geneni arvuga. Erinevad geneetilise mitmekesisuse tasandad suurendavad populatsiooni elujõulisust ja võimet kohanduda keskkonnamuutustega ning seega on geneetilise mitmekesisuse säilitamine ja selle kaitsmine oluline (Primack et al., 2008).

Vajalik oleks leida sobiv meetod ja uurida ning võrrelda Eesti ning mõne naabermaa (Soome või Rootsi) põhja-raunjala loodusliku populatsiooni geneetilist varieeruvust, millelaine teave võiks aidata kaasa liigi säilitamisele praeguses looduslikus leiukohas ja tehispopulatsioonide rajamisele.

4.1. Põhja-raunjala ja perekonna Asplenium geneetilised uuringud

4.2. Sõnajalaliikide geneetilise uurimise meetoditest

Kuna põhja-raunjalga on geneetiliselt vähe uuritud ning teadaolevalt ainult allosümme, tuleks leida teisi meetode, mida Eesti ja naabermaade populatsiooni geneetilise varieeruvuse iseloomustamiseks kasutada. Sellest lähtuvalt valmis kokkuvõttes mõningatest artiklitest, kus kajastati erinevate sõnajalaliikide geneetilist varieeruvust ning mitmeid viise selle uurimiseks (tabel 3). Eesmärgiks oli saada aimu erinevate
uurimisviiside plussidest ja miinustest, valida nendest sobilikud, et rakendada neid tulevikus Eesti ning potentsiaalselt ka naabermaade populatsioonide iseloomustamisel.

Käesolevas tabelis on käsitletud 22 erinevat uuritut, mis kajastavad põhiliselt sõnajalaliikide populatsioonide geneetilist mitmekesisust, aga ka paljunemise dünaamikat, fülogeneetilisi suhteid, evolutsioonilist kujunemist ning erinevate geneetiliste uurimismeetodite ja markerite väljatöödamist ja rakendamist.

<table>
<thead>
<tr>
<th>Autorid (praegu vaid esimene autor)</th>
<th>Uuritud liik/ Sugukond</th>
<th>Meetod/ molekulaarne marker</th>
<th>Töö eesmärk</th>
<th>Tulemus (kas marker sobis)</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. 2005</td>
<td>Isoetes hypsophila</td>
<td>ISSR</td>
<td>Liigi geneetiline varieeruvus.</td>
<td>Leiti nii regioonide kui ka populatsioonidevaheline ja populatsioonisisene geneetiline varieeruvus.</td>
<td>65 praimerist kasutati 12</td>
</tr>
<tr>
<td>Dong 2007</td>
<td>Ceratopteris pteridoides</td>
<td>ISSR</td>
<td>Geenivoolu osakaal liigi populatsioonides</td>
<td>Leiti madal populatsioonidevaheline geneetiline varieeruvus ja geenivoolu suur osakaal.</td>
<td>65 praimerist kasutati 13</td>
</tr>
<tr>
<td>Dong 2008</td>
<td>Ceratopteris thalictroides</td>
<td>ISSR ja RAPD</td>
<td>Liigi geneetiline varieeruvus</td>
<td>Avastati keskmine liigisisene, madal populatsioonisisene ja madal populatsioonidevaheline geneetiline varieeruvus.</td>
<td>60 ja 65 praimerist kasutati mõlemal juhul 12 (RAPD ja ISSR), markerid näitasid sarnaseid tulemusi</td>
</tr>
<tr>
<td>Hsu 2000</td>
<td>Arhangiopteris itoi</td>
<td>RAPD</td>
<td>Liigi populatsiooni geneetiline varieeruvus</td>
<td>Madal RAPD varieeruvus populatsioonis.</td>
<td>Kasutati 40 praimerit, väike populatsioon (18 isendit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Autor</th>
<th>Esine</th>
<th>Tõlgimine</th>
<th>Leiti kõrge populatsioonis seisnud ja – populatsiooni vaheline geneetiline varieeruvus.</th>
<th>Kasutati 8 praimerit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang 2006</td>
<td>Adiantum reniforme var. sinense Adiantaceae</td>
<td>AFLP (FIASCO)</td>
<td>Liigi iseloomustamiseks sobivate mikrosatelliitide väljatöötamine</td>
<td>14 mikrosatelliidi väljatöötamine.</td>
<td>Kasutati 8-t varem väljatöötatud praimerit</td>
</tr>
<tr>
<td>Kang 2008</td>
<td>Adiantum reniforme var.sinense Adiantaceae</td>
<td>SSR</td>
<td>Liigi ajaloolise geneetilise struktuuri (mitmekesisuse) uurimine</td>
<td>Liigi populatsiooni arvukuse langus lähiajaloos ja geneetilise mitmekesisuse tõenäoline langus keskkonna muutmised paleolohuses.</td>
<td>Kasutati 8-t varem väljatöötatud praimerit</td>
</tr>
<tr>
<td>Kim 2009</td>
<td>Isoëtes asiatica Isoetaceae</td>
<td>AFLP, nukleotiidi järjestuse määramine nrITS-l ja kloroplasti DNA piirkondades</td>
<td>Liigi evolutsiooniline põlvkond ja seaduse koordineerimine</td>
<td>Liigi tekke muutused ja monofüleetiline kuuluvus.</td>
<td></td>
</tr>
<tr>
<td>Landerott 2001</td>
<td>Dryopteris cristata Dryopteridaceae</td>
<td>RAPD</td>
<td>Evolutsioonist protsesside mõju liigi tänapeaavastely geneetilisele varieeruvusele</td>
<td>Liigisisene geneetiline mitmekesisus oli vaga madal ja viitab pudelekaaela efektile. Suuremates populatsioonides oli suurem geneetiline varieeruvus.</td>
<td>80 praimerist kasutati 73</td>
</tr>
<tr>
<td>Autor(ud)</td>
<td>Liik</td>
<td>Familie</td>
<td>Metod</td>
<td>Eesmärk</td>
<td>Tulemus</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Pryor 2001</td>
<td>Adiantum capillus-veneris</td>
<td>Adiantaceae</td>
<td>SSR</td>
<td>Populaatsioonide geneetilise struktuuri ja varieeruvuse uurimine</td>
<td>Liigi kõrge geneetiline varieeruvus, mis on jaotunud pigem populatsioonivaheliselt kui siseselt.</td>
</tr>
<tr>
<td>Schneller 1994</td>
<td>Dryopteris remota</td>
<td>Dryopteridaceae</td>
<td>Allosüümid</td>
<td>Liigi geneetiline varieeruvus ja päritolu</td>
<td>Kõigi isenditel leiti identne allosüümne gentotüüp.</td>
</tr>
<tr>
<td>Schneller 1998</td>
<td>Dryopteris remota</td>
<td>Dryopteridaceae</td>
<td>RAPD 13</td>
<td>Liigi põlvnemismustrid</td>
<td>Avastati madal populatsioonisisene ja populatsioonidevaheline geneetiline varieeruvus, ühekordne liigiteke.</td>
</tr>
<tr>
<td>Su 2004</td>
<td>Alsophila spinulosa</td>
<td>Cyatheaceae</td>
<td>cpDNA atpB–rbcL lõikude sekveneerimine</td>
<td>Populaatsiooni geneetiline struktuur ja fülogeograafilised mustrid</td>
<td>Avastati suur liigisisene geneetiline varieeruvus, millest enamik oli jaotunud erinevate levikuregioonide vahel. Fülogeograafilised andmed.</td>
</tr>
<tr>
<td>Su 2005</td>
<td>Alsophila spinulosa</td>
<td>Cyatheaceae</td>
<td>cpDNA trnL–F mittekodeerivate regioonide järjestuse sekveneerimine</td>
<td>Populaatsioonide geneetiline varieeruvus</td>
<td>Avastati suur liigisisene geneetiline varieeruvus, millest enamik oli jaotunud erinevate regioonide vahel. Fülogeograafilised andmed.</td>
</tr>
<tr>
<td>Zhou 2008</td>
<td>Alsophila spinulosa</td>
<td>Cyatheaceae</td>
<td>AFLP</td>
<td>Liigi uurimiseks vajalike mikrosatelliitide</td>
<td>3 mikrosatelliidi väljatöötamine ja iseloomustamine. Markerid näitasid väga väikest geneetilist</td>
</tr>
<tr>
<td>Research Year</td>
<td>botanical name</td>
<td>family</td>
<td>SSR/RAPD centre</td>
<td>SSR allele diversity</td>
<td>Liiti vähene isenditevaheline ja suur populatsioonidevaheline geneetiline varieeruvus.</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Vitalis 2002</td>
<td>Marsilea strigosa</td>
<td>Marsileaceae</td>
<td>SSR</td>
<td>Liiti geneetiline varieeruvus</td>
<td>Leiti vähene isenditevaheline ja suur populatsioonidevaheline geneetiline varieeruvus.</td>
</tr>
<tr>
<td>Woodhead 2005</td>
<td>Athyrium distentifolium</td>
<td>woodsiaiaceae</td>
<td>AFLP, SSR, EST-SSR</td>
<td>Erinevate markersüsteemide usaldusväärsus</td>
<td>EST-SSR näitas regioonidevaheliselt usaldusväärsamaid tulemusi kui SSR. Genoomi alleelivarieeruvuses näitas SSR paremaid tulemusi kui EST-SSR. Kõik markerid populatsioonidevahelise mitmekesisuses olid üldiselt sama usaldusväärsusega. AFLP näitas paremat taset feneetiliste klastrate analüüsis kui teised.</td>
</tr>
</tbody>
</table>
4.3. Põhja-raunjala võimalikud molekulaarsed uurimismeetodid

Üks kasutatavamaid meetodeid molekulaarökoloogide poolt populatsiooniuringutes on mikrosatelliitse DNA uurimine (SSR), mis sisaldab genoomi 1-5 nukleotiidsete tandemkordusjärjestuste (mikrosatelliitide) pikkuse iseloomustamisel geelektroforeesil. Mikrosatelliidid võimaldavad hõlpsalt uurida süeide erinevaid allele. Plussiks on see, et kui sobivad praimerid on juba leitud, sisaldab ühe proovi uurimine vaid PCR-analüüsi ja foreesi mis on kiiresti ja lihtsalt teostav (Väli, 2002). Kodominantse markerina tuvastatakse koik uuritavas lookuses olevad alleleid, saades tulemusteks täpsemad andmed (Freeland, 2005). Meetodi puudus seisneb ühele liigile omaste mikrosatelliitsete praimerite genereerimise keerukuses- see on väga rahanõudev töö. Paraku on vastavad praimerid tihti liigispetsiifilised ja põhja-raunjala uurimisel SSR meetodil peaks need kõigepealt välja töötama (Väli, 2002). Piisava rahalise- ja ajalise ressursi korral võiks seda meetodit kasutada.

AFLP meetod ühendab endas DNA-d lõikavate ensüümide restriktaaside kasutamise koos vajalike järjestuste amplifitseerimisega PCR-iga ning tuvastab genoomis olevaid polümorfisme väga täpselt, edastades selle koha pealt ISSR-i. Meetodi plussiks on täpsus ja taaskasutatavus, miinusteks on markeri dominantsus ja selle kasutamise suurem aja- ja töökulu (Jones, 2009; Freeland, 2005).

Odavama ja lihtsama meetodina tuleks köne alla RAPD, mille korral kasutatakse juhusliku järjestusega primereid juhuslike DNA lõikude paljundamiseks genoomist, mida seejärel iseloomustatakse foreesil. Selle eeliseks on rakendusvõimalus väheuuritud liikide puhul, madal töö- ja rahaline kulu. Kitsaskohtadeks on kergestitulevad artefaktsed tulemused ning dominantsus. Raske on ka tulemuste täpne reprodutseerimine, kuna see võib olenevalt kasutatavast laboritingimustest ja metoodikast üsna varieeruv olla. Üldiselt ei soovitada seda meetodi üksi kasutada, aga seda võiks rakendada põhja-raunjala uurimisel koos mõne muu meetodiga (Väli, 2002; Jones, 2009).

Arvestades tehtud uuringuid sõnajalaliikidel, tuleksid eelpoolmainitud põhja-raunjala uurimisel köne alla. Kuna käesoleva töö eesmärk oli lihtsalt need võimalikud metodid tuvastada ja neid lühidalt iseloomustada, peaks sobiva(te) valikut kindlasti geneetikutest raunjala uurijatega lähemalt konsulteerima.
Kokkuvõte

Summary

Asplenium septentrionale (L.) Hoffm (Forked Spleenwort) is an *Asplenium* species that has only one small native population in Estonia. Therefore the species is critically endangered and belongs to the group of protected plant species ranking the first category. The goal of the current BA thesis was to give an overall review of the species biology, ecology and population genetics both globally and locally in Estonia. Some possible molecular methods were also proposed with which primarily the genetic diversity of the Estonian native population could be studied in order to use this data for the conservation of the species in the future.

In the first part of the work a general review of the biology and ecology of *A. septentrionale* using the available information was given. Getting an overall view of this field was necessary for making conclusions for preservation and for future research. The structure for this chapter was taken from Marsse`s and Watt`s (2003) review of the species *Pteridium aquilinum*.

In the second part the main reasons regarding the endangerment of the species and the measures to ease those were discussed. The main emphasis was both on the Estonian native population in Prangli as well as on the artificial populations both in the Lahemaa National Park and on the island of Prangli. Since the populations on the island are threatened by extensive human influence and the species is sensitive to changes in environment, their research and preservation should be continued. So far the habitats on Prangli Island haven`t unfortunately properly taken under protection, which should be done. Together with continuous monitoring of the species and its habitat, the creation of artificial populations should be continued in suitable habitats in Estonia.

In the third part of this work studies of genetic structure both on *A. septentrionale* as well as the several other *Asplenium* species were discussed. In addition a summary of 22 scientific publications covering the use of different methods for genetical research on *Asplenium* species together with some other ferns was compiled. Since *A. septentrionale* has not been studied much using molecular methods the goal of the work was to find and characterize suitable genetics methods for future research. As a conclusion both allozymes and DNA could be studied. Suitable methods for studying the DNA would be:
SSR (microsatellites), ISSR, AFLP, RAPD and the sequencing of nrITS or cpDNA. For choosing the most appropriate method for research discussions with the geneticists-Asplenium researchers should be carried out.
Kasutatud kirjandus

Dhir, K.K. 1980. *Ferns of North-Western Himalayas*. Vaduz, 146.

Raunkiaer, C. 1934. *The Life Forms of Plants*. Oxford: Oxford University Press,

Käsitirjad

Internetileheküljed

[http://www.iucn.org/knowledge/publications_doc/tools/]

Keskkonnaregister. [http://register.keskkonnainfo.ee]

Andmebaasid

...